Mining Activity Clusters From Low-level Event Logs
نویسنده
چکیده
Process mining techniques have proven to be a valuable tool for analyzing the execution of business processes. They rely on logs that identify events at an activity level, i.e., most process mining techniques assume that the information system explicitly supports the notion of activities/tasks. This is often not the case and only low-level events are being supported and logged. For example, users may provide different pieces of data which together constitute a single activity. The technique introduced in this paper uses clustering algorithms to derive activity logs from lower-level data modification logs, as produced by virtually every information system. This approach was implemented in the context of the ProM framework and its goal is to widen the scope of processes that can be analyzed using existing process mining techniques.
منابع مشابه
Activity Mining by Global Trace Segmentation
Process Mining is a technology for extracting non-trivial and useful information from execution logs. For example, there are many process mining techniques to automatically discover a process model describing the causal dependencies between activities. Unfortunately, the quality of a discovered process model strongly depends on the quality and suitability of the input data. For example, the log...
متن کاملTWINCLE : A Constrained Sequential Rule Mining Algorithm for Event Logs
Discovering workflow patterns in event-logs is important for many organizations to understand and optimize organizational processes. Although numerous algorithms have been proposed in the literature to discover patterns in sequences of symbols, most of them are inadequate to discover patterns in rich event-log data. In this paper, motivated by the analysis of patient pathways in the health doma...
متن کاملFrom Low-Level Events to Activities - A Pattern-Based Approach
Process mining techniques analyze processes based on event data. A crucial assumption for process analysis is that events correspond to occurrences of meaningful activities. Often, low-level events recorded by information systems do not directly correspond to these. Abstraction methods, which provide a mapping from the recorded events to activities recognizable by process workers, are needed. E...
متن کاملWanna Improve Process Mining Results? It’s High Time We Consider Data Quality Issues Seriously
The growing interest in process mining is fueled by the increasing availability of event data. Process mining techniques use event logs to automatically discover process models, check conformance, identify bottlenecks and deviations, suggest improvements, and predict processing times. Lion’s share of process mining research has been devoted to analysis techniques. However, the proper handling o...
متن کاملConcept drift detection in business process logs using deep learning
Process mining provides a bridge between process modeling and analysis on the one hand and data mining on the other hand. Process mining aims at discovering, monitoring, and improving real processes by extracting knowledge from event logs. However, as most business processes change over time (e.g. the effects of new legislation, seasonal effects and etc.), traditional process mining techniques ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2006